micro-XRF
The µ-XRF laboratory is located at the Dipartimento di Scienze della Terra (DST), University of Torino.
It is constituted by a µ-XRF Eagle III-XPL spectrometer equipped with an EDS Si(Li) detector and with an Edax Vision32 microanalytical system.
The µ-XRF Eagle III-XPL was acquired by the Centre with a grant from the Compagnia di San Paolo of Torino.
INSTRUMENT DETAILS
- µ-XRF Eagle III-XPL
- EDS Si(Li) detector, 30 mm2, Be window;
- micro-focus X-Ray tube (80 x 80 µm), Rh anode (50 kV, 1mA), air cooled;
- poly-capillary X-Ray optics (up to 105 CPS): 30 µm beam diameter (Varispot 30¸300 µm).
- primary filters;
- Sample chamber (Ø 330 mm x 350 mm ). Vacuum/Air analysis;
- Motorized stage X-Y-Z (100*100*60 mm), step 1.5 µm;
- 2 color cameras (15 x 12 mm and 1.5 x 1.2 mm , auto-focus);
- Quantification options;
- X-Ray maps and profiles software.
APPLICATIONS
- Chemical analysis of major and trace elements in minerals and glasses
- X-ray maps and profiles
INSTRUMENT BOOKING
Authorized researchers can get access to the instruments from Monday to Friday following the "Access rules" (link top left).
USEFUL REFERENCES (see XRF course for details):
• Beattie H.J., Brissey, R.M., (1954) Analytical Chemistry 26, 980-983.
• Bertin E.P, Introduction to X-Ray Spectrometric Analysis (1978) Plenum Press, New York.
• Bogaerts A., Gijbels R., and Vleck J.(1998). Spectrochim. Acta, Part B 53, 1517–1526
• Bogaerts A. and Gijbels R., (1998) J. Anal. At. Spectrom. 13, 721–726
• Bogaerts A., Chen Z., Gijbels R., and Vertes A., (2003) Spectrochim. Acta, Part B 58, 1867–1893.
• Borghi A., Cossio R.Serra M. and Vaggelli G. (2009) µ-XRF Spectrometer for the study of rock forming minerals. ICXOM20 Karlsruhe, Germany 14-18/09/2009.
• Borkhodoev V.Y., (2002). X-Ray Spectrometry 31, 209–218.
• Criss, J.W., Birks, L.S.(1968) Analytical Chemistry 40, 1080-1086.
• http://www.esrf.eu/UsersAndScience/Experiments/Imaging/ID22
• Gerward L. (1981). “X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon” J. Phys. B: At. Mol. Phys. 14, 3389-3395.
• D.S. Gholap et al. (2010) Analytica Chimica Acta 664, 19–26.
• George J. Havrilla, Velma Montoya, Stephen Lamont, Lav Tandon . Aerosol Filter Analysis using Scanning Micro X-ray Fluorescence. Denver X-ray Conference, 2007.
• Henke B.L., Gullikson E.M., and. Davis J.C, (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, (1993). Atomic Data and Nuclear Data Tables 54, 181-342.
• Jenkins R., Gould R.W., and Gedcke D., Quantitative X-Ray Spectrometry, 2nd edition (Marcel Dekker, Inc., New York, 1995).
• Kotula P. G., Keenan M. R., and Michael J. R. (2003), Automated Analysis of SEM X-ray Spectral Images: A Powerful New Microanalysis Tool, Microsc. Microanal. 91, 17
• Lucas-Tooth J., Pyne C., (1963) Advances in X-ray Analysis, 7, 523-541.
• Martin W.C and Wiese W.L., Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas ( National Institute of Standards and Technology, Gaithersburg, Maryland, 1999). Online at http://physics.nist.gov/Pybs/AtSpec/.
• Miller et al. (2005) Spectrochimica Acta Part B 60, 1458–1467.
• Rafał Sitko(2009). Quantitative X-ray fluorescence analysis of samples of less than ‘infinite thickness’: Difficulties and possibilities. Spectrochimica Acta Part B 64, 1161–1172.
• Sherman, J., (1954) ASTM Special Tech. Publ. No. 157.
• Sherman J., (1955). Spectrochim. Acta 7, 283.
• Shiraiwa, T., Fujino, N.(1966) Japanese Journal of Applied Physics 5, 886-899.
• Tertian R. and Claisse F., Principles of Quantitative X-Ray Fluorescence Analysis (1982) Heyden, London.
• Thomasin C., Miller G. J. Havrilla (2005) Elemental Imaging For Pharmaceutical Tablet Formulation Analysis By Micro X-ray Fluorescence. Advances in X-ray Analysis 48, 274-283.
• Thomsen V., Schatzlein D., and Mercuro D., (2005). Spectroscopy 20, 22–25.
• Uzu et al. (2010) Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ. Sci. Technol. 44, 1036.
-Wang et al. (2010) Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer’s disease using synchrotron radiation X-ray fluorescence analysis J. Anal. At. Spectrom. 25, 328–333.
-G. Vaggelli and R. Cossio (2012) “µ-XRF analysis of glasses: a non-destructive utility for cultural heritage applications” Analyst, 137, 662