micro-XRF

The µ-XRF laboratory is located at the Dipartimento di Scienze Mineralogiche e Petrologiche (DSMP), University of Torino.
It is constituted by a µ-XRF Eagle III-XPL spectrometer equipped with an EDS Si(Li) detector and with an Edax Vision32 microanalytical system.
The µ-XRF Eagle III-XPL was acquired by the Centre with a grant from the Compagnia di San Paolo of Torino.

People in charge of the Lab:
Dr. Gloria Vaggelli (CNR), e-mail: vaggelli@igg.cnr.it; tel.: +39 011 670.5177
Dr. Roberto Cossio (DST), e-mail: roberto.cossio@unito.it; tel: +39 011 670.5177
Dr. Francesco Turci (DCHIM), e-mail: francesco.turci@unito.it; tel.: +39 011 670.7577

 

INSTRUMENT

- µ-XRF Eagle III-XPL
- EDS Si(Li) detector, 30 mm2, Be window;
- micro-focus X-Ray tube (80 x 80 µm), Rh anode (50 kV, 1mA), air cooled;
- poly-capillary X-Ray optics (up to 105 CPS): 30 µm beam diameter (Varispot 30¸300 µm).
- primary filters;
- Sample chamber (Ø 330 mm x 350 mm ). Vacuum/Air analysis;
- Motorized stage X-Y-Z (100*100*60 mm), step 1.5 µm;
- 2 color cameras (15 x 12 mm and 1.5 x 1.2 mm , auto-focus);
- Quantification options;
- X-Ray maps and profiles software.

 

APPLICATIONS

- Chemical analysis of major and trace elements in minerals and glasses
- X-ray maps and profiles

Costs and rules

 

INSTRUMENT BOOKING

 Researchers and PhD students who attended the µ-XRF course can reserve the lab sending an E-mail to the people in charge of the instruments. The available turns (From Monday to Friday: Turn I 9-13 ; Turn II 14-18 h) are visible from here.

Eagle u-XRF Manual

Related course slides 

 

USEFUL REFERENCES (see XRF course for details):

• Beattie H.J., Brissey, R.M., (1954) Analytical Chemistry 26, 980-983.
• Bertin E.P, Introduction to X-Ray Spectrometric Analysis (1978) Plenum Press, New York.
• Bogaerts A., Gijbels R., and Vleck J.(1998). Spectrochim. Acta, Part B 53, 1517–1526
• Bogaerts A. and Gijbels R., (1998) J. Anal. At. Spectrom. 13, 721–726
• Bogaerts A., Chen Z., Gijbels R., and Vertes A., (2003) Spectrochim. Acta, Part B 58, 1867–1893.
• Borghi A., Cossio R.Serra M. and Vaggelli G. (2009) µ-XRF Spectrometer for the study of rock forming minerals. ICXOM20 Karlsruhe, Germany 14-18/09/2009.
• Borkhodoev V.Y., (2002). X-Ray Spectrometry 31, 209–218.
• Criss, J.W., Birks, L.S.(1968) Analytical Chemistry 40, 1080-1086.
http://www.esrf.eu/UsersAndScience/Experiments/Imaging/ID22
• Gerward L. (1981). “X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon” J. Phys. B: At. Mol. Phys. 14, 3389-3395.
• D.S. Gholap et al. (2010) Analytica Chimica Acta 664, 19–26.
• George J. Havrilla, Velma Montoya, Stephen Lamont, Lav Tandon . Aerosol Filter Analysis using Scanning Micro X-ray Fluorescence. Denver X-ray Conference, 2007.
• Henke B.L., Gullikson E.M., and. Davis J.C, (1993). X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, (1993). Atomic Data and Nuclear Data Tables 54, 181-342.
• Jenkins R., Gould R.W., and Gedcke D., Quantitative X-Ray Spectrometry, 2nd edition (Marcel Dekker, Inc., New York, 1995).
• Kotula P. G., Keenan M. R., and Michael J. R. (2003), Automated Analysis of SEM X-ray Spectral Images: A Powerful New Microanalysis Tool, Microsc. Microanal. 91, 17
• Lucas-Tooth J., Pyne C., (1963) Advances in X-ray Analysis, 7, 523-541.
• Martin W.C and Wiese W.L., Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas ( National Institute of Standards and Technology, Gaithersburg, Maryland, 1999). Online at http://physics.nist.gov/Pybs/AtSpec/.
• Miller et al. (2005) Spectrochimica Acta Part B 60, 1458–1467.
• Rafał Sitko(2009). Quantitative X-ray fluorescence analysis of samples of less than ‘infinite thickness’: Difficulties and possibilities. Spectrochimica Acta Part B 64, 1161–1172.
• Sherman, J., (1954) ASTM Special Tech. Publ. No. 157.
• Sherman J., (1955). Spectrochim. Acta 7, 283.
• Shiraiwa, T., Fujino, N.(1966) Japanese Journal of Applied Physics 5, 886-899.
• Tertian R. and Claisse F., Principles of Quantitative X-Ray Fluorescence Analysis (1982) Heyden, London.
• Thomasin C., Miller G. J. Havrilla (2005) Elemental Imaging For Pharmaceutical Tablet Formulation Analysis By Micro X-ray Fluorescence. Advances in X-ray Analysis 48, 274-283.
• Thomsen V., Schatzlein D., and Mercuro D., (2005). Spectroscopy 20, 22–25.
• Uzu et al. (2010) Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environ. Sci. Technol. 44, 1036.
-Wang et al. (2010) Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer’s disease using synchrotron radiation X-ray fluorescence analysis J. Anal. At. Spectrom. 25, 328–333.
-G. Vaggelli and R. Cossio (2012) “µ-XRF analysis of glasses: a non-destructive utility for cultural heritage applications” Analyst, 137, 662